RAS Global AffairsСША & Канада: экономика – политика – культура USA & Canada: Economics – Politics – Culture

  • ISSN (Print) 26866730
  • ISSN (Online) 3034-6045

US Leadership in Artificial Intelligence: Is There a Threat from BRICS Countries?

PII
S2686673025010037-1
DOI
10.31857/S2686673025010037
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
53-73
Abstract
The article draws attention to the fact that the United States, historically the first and still recognized leader in artificial intelligence (AI) research and development, is now being challenged by rapidly developing BRICS countries. Based on a comparative analysis of US and BRICS academic publication activity using the open database developed by the Australian Strategic Policy Institute (ASPI), it is shown that the United States still possesses a serious advantage in the field of AI research and implementation, created by business and supported by strategic government policies. At the same time, the analysis of selected data from the ASPI database concerning critical areas of AI study confirmed the expert opinion that the position of the United States as a world leader is under increasing pressure. In terms of publication activity in the field of AI, China is either leading or ranked second after the US in almost all critical areas. In addition, the progress of some other BRICS countries is clearly visible. India demonstrates progress across all critical areas, although it still lags behind the two leaders. Iran holds notable positions in natural language processing, machine learning, AI algorithms, and hardware accelerators. Russia ranks comparatively low in the studied research metrics, though this can partly be attributed to the current geopolitical situation and the associated limitations on international publication activity. The conclusion is that cooperation among BRICS countries in complementary areas of AI research has great prospects and could determine the speed of development and implementation of technologies important for achieving technological sovereignty.
Keywords
искусственный интеллект ИИ технологический суверенитет технологическое лидерство США БРИКС
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Путин сообщил, что утвердил обновленную Стратегию развития искусственного интеллекта. ТАСС. 29.02.2024. Available at: https://tass.ru/ekonomika/20116773 (accessed 21.06.2024).
  2. 2. ASPI’s Critical Technology Tracker. 2024. Аvailable at: https://www.aspi.org.au/report/critical-technology-tracker (accessed 30.08.2024).
  3. 3. Blueprint for an AI Bill of Rights. 2022. Аvailable at: https://www.whitehouse.gov/ostp/ai-bill-of-rights/ (accessed 21.08.2024).
  4. 4. Maintaining American Leadership in Artificial Intelligence: Executive Order 13859 of February 11, 2019. Available at: https://www.federalregister.gov/documents/2019/02/14/2019-02544/maintaining-american-leadership-in-artificial-intelligence (accessed 21.06.2024).
  5. 5. Roy, P. 2021. Rewire for Growth. Accenture, 26.04.2021. Available at: https://www.accenture.com/in-en/insights/consulting/artificial-intelligence-economic-growth-india (accessed 21.08.2024).
  6. 6. Stanford University. 2017. Full Translation: China’s ‘New Generation Artificial Intelligence Development Plan’ (2017). Available at: https://digichina.stanford.edu/work/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/ (accessed 25.08.2024).
  7. 7. The National Artificial Intelligence Research and Development Strategic Plan. 2016. National Science and Technology Council, Networking and Information Research and Development Sub-committee. Available at: www.nitrd.gov/pubs/national_ai_ rd_strategic_plan.pdf (accessed 12.06.2021).
  8. 8. Борисов А.В., Босов А.В., Жуков Д.В. 2021. Стратегия исследований и разработок в области искусственного интеллекта III: Доктрина государственной поддержки США. Системы и средства информации, № 31 (4): 114–134. DOI: https://doi.org/14357/08696527210410.
  9. 9. Гольдберг Й. 2022. Нейросетевые методы в обработке естественного языка. Litres.
  10. 10. Золотарёв П.С. 2023. Некоторые особенности подходов к пониманию искусственного интеллекта в России и США. Россия и Америка в XXI веке, № 6. DOI: https://doi.org/10.18254/S207054760029534-4.
  11. 11. Ивановский Б.Г. 2021. Экономические эффекты от внедрения технологий "искусственного интеллекта". Социальные новации и социальные науки, № 2(4), 8–25. DOI: https://doi.org/10.31249/snsn/2021.02.01.
  12. 12. Пороховский А.А. 2019. Цифровизация и производительность труда. США & Канада: экономика, политика, культура, 49 (8): 5–24. DOI: https://doi.org/10.31857/S032120680005964-4.
  13. 13. Тюрина Д.А., Пальмов С. В. (2023). Применение нейронных сетей в обработке естественного языка. Журнал прикладных исследований, №7, 158–162. DOI: https://doi.org/10.47576/2949-1878_2023_7_158.
  14. 14. Ahmed, N., Amin, R., Aldabbas, H., Koundal, D., Alouffi, B., Shah, T. 2022. Machine learning techniques for spam detection in email and IoT platforms: analysis and research challenges. Security and Communication Networks, 2022(1): 1862888. DOI: https://doi.org/10.1155/2022/1862888.
  15. 15. Arenal, A., Armuna, C., Feijoo, C., Ramos, S., Xu, Z., Moreno, A. 2020. Innovation ecosystems theory revisited: The case of artificial intelligence in China. Telecommunications Policy, 44(6): 101960. DOI: https://doi.org/10.1016/j.telpol.2020.101960.
  16. 16. Ayachi, R., Afif, M., Said, Y., Abdelali, A.B. 2021. Real-time implementation of traffic signs detection and identification application on graphics processing units. International Journal of Pattern Recognition and Artificial Intelligence, 35(07): 2150024. DOI: https://doi.org/10.1142/S0218001421500245.
  17. 17. Bareis, J. & Katzenbach, C., 2022. Talking AI into being: The narratives and imaginaries of national AI strategies and their performative politics. Science, Technology, & Human Values, 47(5): 855–881. DOI: https://doi.org/10.1177/01622439211030007.
  18. 18. Bazarkina, D.Y., Pashentsev, E.N., 2020. Malicious use of artificial intelligence. Russia in Global Affairs, 4: 154–177. DOI: https://doi.org/10.31278/1810-6374-2020-18-4154-177.
  19. 19. Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., Floridi, L. 2018. Artificial intelligence and the ‘good society’: the US, EU, and UK approach. Science and Engineering Ethics, 24, 505–528. DOI: https://doi.org/10.1007/s11948-017-9901-7.
  20. 20. Chen, Z., Huang, M., Kang, H. 2023. Research Progress of Chip Types and Their Applications. Highlights in Science, Engineering and Technology, 71: 428–435. DOI: https://doi.org/10.54097/hset.v71i.14652.
  21. 21. Corallo, A., Crespino, A.M., Del Vecchio, V., Gervasi, M., Lazoi, M., Marra, M. 2023. Evaluating maturity level of big data management and analytics in industrial companies. Technological Forecasting and Social Change, 196: 122826. DOI: https://doi.org/10.1016/j.techfore.2023.122826.
  22. 22. Deo, N., Anjankar, A. 2023. Artificial intelligence with robotics in healthcare: a narrative review of its viability in India. Cureus, 15 (5): e39416. DOI: https://doi.org/10.7759%2Fcureus.39416.
  23. 23. Ding, J., 2018. Deciphering China’s AI dream. The context, components, capabilities and consequences of China’s strategy to lead the world in AI. Future of Humanity Institute Technical Report, University of Oxford. Retrieved from https://www.fhi.ox.ac.uk/wp-content/uploads/Deciphering_Chinas_AI-Dream.pdf
  24. 24. Hine, E., Floridi, L. 2024. Artificial intelligence with American values and Chinese characteristics: a comparative analysis of American and Chinese governmental AI policies. AI & SOCIETY, 39(1): 257–278. DOI: https://doi.org/10.1007/s00146-022-01499-8.
  25. 25. Horowitz, M.C., Allen, G.C., Kania, E.B., & Scharre, P. (2018). Strategic competition in an era of artificial intelligence. Center for a New American Security (CNAS). Retrieved from CNAS-Strategic-Competition-in-an-Era-of-AI-July-2018_v2.
  26. 26. Javaid, M., Haleem, A., Singh, R.P., Suman, R., Rab, S. 2022. Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks, 3: 58–73. DOI: https://doi.org/10.1016/j.ijin.2022.05.002.
  27. 27. Khan, M., Ghafoor, L. 2024. Adversarial Machine Learning in the Context of Network Security: Challenges and Solutions. Journal of Computational Intelligence and Robotics, 4(1): 51–63. Retrieved from https://thesciencebrigade.com/jcir/article/view/118
  28. 28. Knox, J. (2020). Artificial intelligence and education in China. Learning, Media and Technology, 45(3): 298–311. DOI: https://doi.org/10.1080/17439884.2020.1754236.
  29. 29. Kumar, S., Wang, Y., Young, C., Bradbury, J., Kumar, N., Chen, D., & Swing, A. 2021. Exploring the limits of Concurrency in ML Training on Google TPUs. Proceedings of Machine Learning and Systems, 3: 81–92.
  30. 30. Liu, Y., Ma, X., Shu, L., Hancke, G.P., Abu-Mahfouz, A.M. 2020. From Industry 4.0 to Agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE transactions on industrial informatics, 17 (6): 4322–4334. DOI: https://doi.org/10.1109/TII.2020.3003910.
  31. 31. Lu, C.H. 2021. The impact of artificial intelligence on economic growth and welfare. Journal of Macroeconomics, 69: 103342. DOI: https://doi.org/10.1016/j.jmacro.2021.103342.
  32. 32. Mahesh, B. 2020. Machine learning algorithms-a review. International Journal of Science and Research (IJSR), 9(1): 381–386. Available at: https://www.ijsr.net/getabstract.php?paperid=ART20203995
  33. 33. Maiti, D., Awasthi, A. 2020. ICT exposure and the level of wellbeing and progress: a cross country analysis. Social Indicators Research, 147 (1): 311–343. DOI: https://doi.org/10.1007/s11205-019-02153-5.
  34. 34. Moriyasu, K., 2024. Kamala Harris says America, not China, will win 21st century. Nikkei Asia, August 23. Available at: https://asia.nikkei.com/Politics/U.S.-elections2024/Kamala-Harris-says-America-not-China-will-win-21st-century (accessed 10.09.2024).
  35. 35. Naseer, I. 2023. Machine Learning Applications in Cyber Threat Intelligence: A Comprehensive Review. The Asian Bulletin of Big Data Management, 3(2): 190–200. DOI: https://doi.org/ 10.62019/abbdm.v3i2.85.
  36. 36. Nikitas, A., Michalakopoulou, K., Njoya, E.T., Karampatzakis, D. 2020. Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era. Sustainability, 12 (7): 2789. DOI: https://doi.org/10.3390/su12072789.
  37. 37. Pagliosa, M., Tortorella, G., Ferreira, J.C.E. 2021. Industry 4.0 and Lean Manufacturing: A systematic literature review and future research directions. Journal of Manufacturing Technology Management, 32 (3): 543–569. DOI: https://doi.org/10.1108/JMTM12-2018-0446.
  38. 38. Rasser, M., Lamberth, M., Riikonen, A, Guo, C., Horowitz, M., Scharre, P. 2019. The American AI Century: A Blueprint for Action. Center for a New American Security (CNAS). Available at: https://s3.us-east-1.amazonaws.com/files.cnas.org/documents/CNAS-Tech-American-AI-Century_updated_2023-06-09-164859.pdf (accessed 03.09.2024).
  39. 39. Renda, A., 2019. Artificial Intelligence. Ethics, governance and policy challenges. CEPS Centre for European Policy Studies.
  40. 40. Roberts, H., Cowls, J., Morley, J., Taddeo, M., Wang, V., Floridi, L. 2021. The Chinese approach to artificial intelligence: an analysis of policy, ethics, and regulation (pp. 47–79). Springer International Publishing.
  41. 41. Ruhnke, K. 2023. Empirical research frameworks in a changing world: The case of audit data analytics. Journal of International Accounting, Auditing and Taxation, 51: 100545. DOI: https://doi.org/10.1016/j.intaccaudtax.2023.100545.
  42. 42. Saba, C., Pretorius, M. 2024. The mediating role of governance in creating a nexus between investment in artificial intelligence (AII) and human well-being in the BRICS countries. BRICS Journal of Economics, 5 (2): 5–44. DOI: https://doi.org/10.3897/bricsecon.5.e117358
  43. 43. Savage, N. 2020. The race to the top among the world’s leaders in artificial intelligence. Nature, 588 (7837): S102–S104. DOI: https://doi.org/10.1038/d41586-020-03409-8.
  44. 44. Shankar, A., Perumal, P., Subramanian, M., Ramu, N., Natesan, D., Kulkarni, V.R., Stephan, T. 2024. An intelligent recommendation system in e-commerce using ensemble learning. Multimedia Tools and Applications, 83(16), 48521–48537. DOI: https://doi.org/10.1007/s11042-023-17415-1.
  45. 45. Taye, M.M. 2023. Understanding of machine learning with deep learning: architectures, workflow, applications and future directions. Computers, 12(5): 91.
  46. 46. Yadav, V.S., Singh, A.R., Raut, R.D., Mangla, S.K., Luthra, S., Kumar, A. 2022. Exploring the application of Industry 4.0 technologies in the agricultural food supply chain: A systematic literature review. Computers & Industrial Engineering, 169: 108304. DOI: https://doi.org/10.1016/j.cie.2022.108304.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library